
TinyTrain: Resource-Aware Task-Adaptive Sparse Training of DNNs at the Data-Scarce Edge

TL;DR

A data-, memory-, and compute-efficient on-device training approach at the edge that 
dynamically adapts to target tasks on the fly.

TinyTrain

We present TinyTrain, a novel framework that enables efficient training of DNNs on 
data-scarce, memory-severely-limited, compute-constrained edge platforms. This is 
enabled by: 


I. A dynamic and task-adaptive sparse-update approach that fine-tunes only part of 
the model's parameters. 


II. A multi-objective parameter selection criterion for layer/channel selection* that 
co-optimises accuracy, compute and memory footprint, specially designed for 
resource-constrained platforms. 


Conclusions

💻  We have developed the first realistic on-device training framework, TinyTrain, 
solving practical challenges in terms of data, memory, and compute constraints for 
edge devices.


🤸  TinyTrain meta-learns in a few-shot fashion during the offline learning stage and 
dynamically selects important layers and channels to update during deployment.


🏋  Targeting broadly used real-world edge devices, TinyTrain achieves 9.5× faster and 
3.5× more energy-efficient training over status-quo approaches, and 2.23× smaller 
memory footprint than SOTA methods, while remaining within the 1 MB memory 
envelope of MCU-grade platforms.
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Intro

📱  On-device training is essential 
for user personalisation and privacy. 


🏚  Extremely resource-constrained 
consumer platforms are ubiquitous, 
but training DNNs on these 
platforms is so far impossible or 
takes impractically long or with 
substantial accuracy loss. 


🎯  Existing efforts focus on 
addressing the first two challenges 
(compute & memory) while 
assuming abundant labelled data 
are available.

Young D. Kwon, Rui Li, Stylianos I. Venieris, Jagmohan Chauhan, Nicholas D. Lane, Cecilia Mascolo

Evaluation Settings

• Three NN architectures: MCUNet, MobileNet, and ProxylessNASNet.


• Baselines: None, FullTrain, LastLayer (Training the last layer only), TinyTL [2], and 
SparseUpdate [1]


• Meta-datasets [3]: 9 cross-domain datasets e.g. Traffic Signs, Flowers, Aircrafts.


• Target platforms: Raspberry Pi Zero 2 and Jetson Nano


Evaluation Results

Table II. Comparison of the memory footprint and 
computation cost for a backward pass.

Fig 3. End-to-End Latency (left) and Energy Consumption (right) of the on-device training methods on three architectures.

Contact: {yd.kwon, rui.li}@samsung.com 

Figure 1: Cross-domain accuracy (y-axis) and compute cost in MAC 
count (x-axis) of TinyTrain and existing methods, targeting 

ProxylessNASNet on Meta-Dataset. The radius of the circles and the 
corresponding text denote the increase in the memory footprint of 

each baseline over TinyTrain. The dotted line represents the accuracy 
without on-device training.
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Table I. TinyTrain outperforms all the baselines w.r.t. top-1 accuracy with three architectures on nine cross-domain datasets


Figure 2: Overview of TinyTrain.
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Fig 4. Ablation Study: Effect of Meta-training (left) and Dynamic Channel Selection (right).

TinyTrain achieves: 


2.6-7.7% higher accuracy than SOTA 


3.6-5.0% higher accuracy compared to FullTrain 


while requiring:


987x smaller memory & 7.12x smaller compute 
compared to FullTrain


1.96x smaller memory & 1.65x smaller compute 
compared to SOTA

TinyTrain achieves 7.5-11.2x lower latency & 2.8-4.2x lower energy consumption compared to FullTrain.


Our Ablation study suggests i) Offline meta-training increases TinyTrain’s accuracy by 5.6 pp on average; ii) 
Dynamic channel selection increases accuracy by 0.8-1.7 pp and 1.9-2.5 pp on average compared to static 
channel selection based on L2-Norm and Random, respectively.

number of multiply-

accumulate (MAC) 

operations in layer inum
ber 

of 

para
meter

s 

of l
ayer

 i

normalised by max 

value across al
l layers 

L of the model

Fisher potential of layer i [4]
Multi-objective 

Parameter Selection 
criterion

 where 
Pi = ∑

o
Δo Δo = 1

2N
N

∑
n

(
D

∑
d

and gnd )2

N: #samples

Feature dim of each 
channel

gradient

activations

Challenges in the targeted extreme-Edge AI training: 


Compute-, Memory-, and Data-Scarcity

*This is carried out efficiently on-device with a single back-propagation per task, avoiding the burdensome search process 
through a few thousand tests of different configurations [1].


